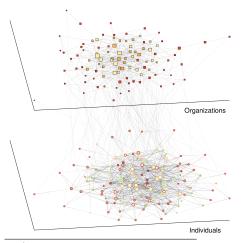
Stochastic block model for multilevel networks unravels structural interdependence between the social and economic networks in a TV program trade fair

Saint-Clair Chabert-Liddell[†]

Joint work with P. Barbillon^{\dagger}, S. Donnet^{\dagger} & E. Lazega^{*}

† UMR INRAe/AgroParisTech, MIA Paris Université Paris-Saclay * Institut d'Études Politiques de Paris

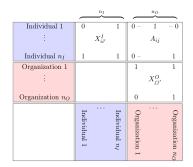
> Sunbelt 2020 13 July 2020


2 Simulation Studies

3 Application to Television Program Trade Fair

Motivation Dataset

Economic and social networks in a television trade fair 1 .


- Economic network: 109 organizations signing deals (undirected interactions)
- Represented on the trade fair by individuals
- Social network: 128 individuals sharing advice (directed interactions)

¹Brailly, 2016

S-C Chabert-Liddell

Sunbelt 2020 3 / 15

Objective of this work

Data :

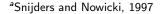
- X^{I} Interactions between individuals
- X^{O} Interactions between organizations
 - A Affiliations of the individuals to the organizations

 $A_{ij} = 1$ if *i* is affiliated to *j* Only one affiliation per individual

Objectives

- Joint probabilistic model on $\mathbf{X} = \{X^{I}, X^{O}\}$ given A
- Evaluate the influence of the inter-organizational level on the inter-individual level

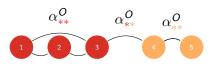
Outline



2 Simulation Studies

Application to Television Program Trade Fair

- Mixture model for graphs
- Latent variables on nodes
- Model heterogeneity of connection



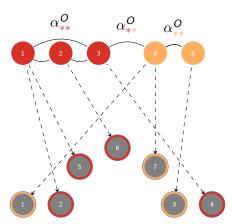
Inter-organizational Level

- n_O organizations into Q_O blocks
- Latent variables are independent

•
$$Z_j^O = I \Leftrightarrow j \in I, \quad I \in \{1, \dots, Q_O\}$$

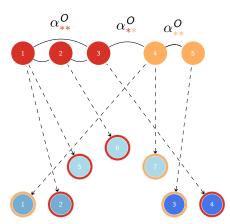
$$\mathbb{P}(Z_j^O=I)=\pi_I^O$$

Inter-organizational Level


- n_O organizations into Q_O blocks
- Latent variables are independent

•
$$Z_j^O = I \Leftrightarrow j \in I, \quad I \in \{1, \dots, Q_O\}$$

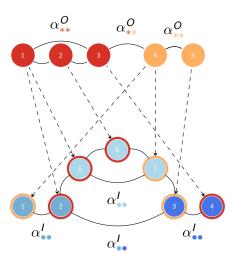
$$\mathbb{P}(Z_j^O=I)=\pi_I^O$$


• Connections are independent given the latent variables

$$\mathbb{P}(X^O_{jj'}=1|Z^O_j=I,Z^O_{j'}=I')=\alpha^O_{II'}$$

Inter-individual Level

- n_I individuals into Q_I blocks
- The block of an individual depends on the block of her/his organization



Inter-individual Level

- n_I individuals into Q_I blocks
- The block of an individual depends on the block of her/his organization

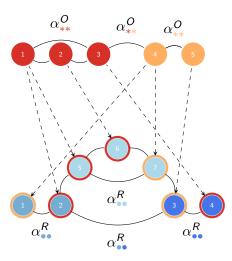
•
$$Z'_i = k \Leftrightarrow i \in k, k \in \{1, \ldots, Q_l\}$$

$$\mathbb{P}(Z_i^{\prime}=k|A_i=j,Z_j^{O}=l)=\gamma_{kl}$$

Inter-individual Level

- n_I individuals into Q_I blocks
- The block of an individual depends on the block of her/his organization

•
$$Z'_i = k \Leftrightarrow i \in k, k \in \{1, \ldots, Q_l\}$$

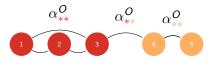

$$\mathbb{P}(Z_i^I = k | A_i = j, Z_j^O = I) = \gamma_{kl}$$

• Connections are independent given the latent variables

$$\mathbb{P}(X_{ii'}^{\prime}=1|Z_i^{\prime}=k,Z_i^{O}=k)=\alpha_{kk'}^{\prime}$$

4

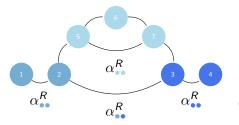
Independence Between Levels



- π^{O} is a probability vector
- Each column of γ as well

• If
$$\gamma_{kl} = \gamma_{kl'} \quad \forall l, l'$$

$$\mathcal{L}(X', X^{O}|A) = \mathcal{L}(X')\mathcal{L}(X^{O})$$


Independence Between Levels

- π^{O} is a probability vector
- Each column of γ as well

• If
$$\gamma_{kl} = \gamma_{kl'} \quad \forall l, l'$$

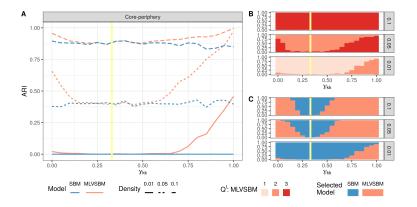
$$\mathcal{L}(X', X^{O}|A) = \mathcal{L}(X')\mathcal{L}(X^{O})$$

- Each level of the multilevel network is a SBM with $\pi' = \gamma_{\cdot 1}$
- Organizational structure has no influence on the connections of individuals

Inference of the Multilevel SBM

- Inference by maximum likelihood estimation
- Variational EM algorithm for a given number of blocks
- Step-wise procedure to navigate between models
- Model selection by a model based penalized criterion (ICL)
- ICL also used to state on the independence between the inter-individual and the inter-organizational levels

Outline


2 Simulation Studies

Application to Television Program Trade Fair

Simulation Studies

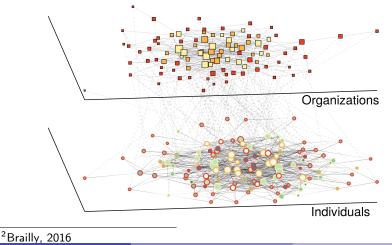
- Strong dependence between levels (γ_{kk} far from 1/3) helps recover the structure of the inter-individual level with the information of the inter-organizational level.
- ICL tends to select model of small size \implies Good for testing the interdependence.

S-C Chabert-Liddell

Multilevel SBM

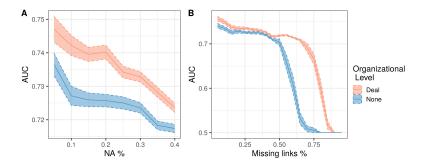
Sunbelt 2020 10 / 15

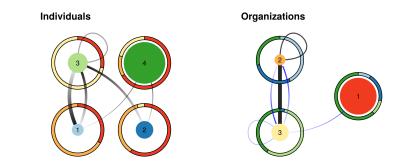
Outline



3 Application to Television Program Trade Fair

Application to a Television Program Trade Fair Dataset²


128 individuals (buyers and sellers) with directed interactions (advice) and 109 organizations with undirected interactions (deal).


S-C Chabert-Liddell

Link Prediction

- The social network and the economic network are interdependent.
- Inter-organizational level helps predicting links on the inter-individual level.

Dataset analysis

- 4 blocks of individuals and 3 blocks of organizations
- Core-periphery structure for the inter-organizational level
- Mainly inter-block connections for individuals (except block 3, sub-group of sellers)
- Intra-block connection between individuals do not replicate the intra-block connections of their organizations (block 2 and 3)

Multilevel SBM

- Preprint available on arXiv: https://arxiv.org/abs/1910.10512
- R package available at https://chabert-liddell.github.io/MLVSBM/
 - Simulation and inference of multilevel networks
 - Handling of missing data on X^{\prime} and X^{O}
 - Prediction on missing dyads, missing links and spurious links
 - Extend to multi-affiliation datasets

Any question? saint-clair.chabert-liddell@agroparistech.fr

Thank you for your attention!

References

Brailly, Julien (2016). "Dynamics of networks in trade fairs—A multilevel relational approach to the cooperation among competitors". In: *Journal of Economic Geography* 16.6, pp. 1279–1301.
Snijders, Tom A.B. and Krzysztof Nowicki (Jan. 1997). "Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure". In: *Journal of Classification* 14.1, pp. 75–100. ISSN: 0176-4268. DOI: 10.1007/s003579900004. URL: http://link.springer.com/10.1007/s003579900004.