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Introduction

A Stochastic Block Model for multilevel networks

Robustness of bipartite ecological interaction networks

Finding common structures in a collection of networks



Introduction
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3 basic types of networks

Simple undirected networks

• Networks with 1 type of nodes and
interactions

• Undirected: Reciprocal interaction
between nodes

• Collaboration networks. . .

1 2

3 4

5

X =

( 0 1 1 0 0
1 0 1 1 0
1 1 0 1 0
0 1 1 0 1
0 0 0 1 0

)
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3 basic types of networks

Simple directed networks

• Networks with 1 type of nodes and
interactions

• Directed: Interaction from one
node to another

• Ecology: Food webs. . .
• Sociology: Advice networks. . .
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X =

( 0 1 1 0 0
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0 1 0 0 0
0 0 0 1 0

)
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3 basic types of networks

Bipartite networks

• Networks with 2 types of nodes and
1 type of interaction

• Interaction between nodes of
different types

• Ecological interaction networks
• Mutualistic (plant-pollinator,

seed-dispersal. . . )
• Antagonistic (host-parasite,

herbivory . . . )
• Social sciences

• Contingency tables
(seed-owner)

• Affiliation networks

R1 R2

C1 C2 C3

X = ( 1 1 0
0 1 1 )
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Collection of networks

Multilayer networks
Collection of networks

• Different types of interactions
• Linked through their nodes

• Multiplex or temporal networks
• Multipartite networks

(ecosystem. . . )
• Multilevel networks

(socio-economic networks)

R1 R2

C1 C2 C3

1 2

3 4

5

XA = ( 1 1 0
0 1 1 )

XB =

( 0 1 1 0 0
1 0 1 1 0
1 1 0 1 0
0 1 1 0 1
0 0 0 1 0

)
XAB =?

Collection of the same basic type

• Collection of bipartite networks (mutualistic, antagonistic. . . )
• Collection of simple networks (advice, food webs. . . )
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Statistical Learning

Data

• A network X or a collection of networks (X 1, . . . ,Xm, . . . ,XM)

Objectives

• Understand the structure/topology of the network
• Heterogeneity in the connection
• Group nodes with similar behavior (ecologically equivalent

species. . . )
• Unravel mesoscale structure (communities, core-periphery. . . )

• Predict missing interactions under an incomplete sampling

Method

• Probabilistic approach
• Latent space model

• Stochastic Block Model
4



Stochastic Block Models
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Stochastic Block Model (SBM)

A1 A2

A3

α••

B1

B2

B3

B4

B5

α••

C1

C2

α••

α••

α••

α••

Mixture model for graph
n nodes into Q blocks

• Latent variable model
Z = {Z1, . . .Zn} ∈ {1, . . . ,Q}n

• P(Zi = q) = πq

Snijders and Nowicki (1997)
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Bipartite Stochastic Block Model

Bipartite Stochastic Block Model (biSBM)

• nr row nodes into Qr blocks and nc column nodes into Qc blocks
• P(Zi = k) = πk and P(Wj = q) = ρq

• P(Xij = 1|Zi = k,Wj = q) = αkq

Notation: X ∼ biSBMnr ,nc (Qr ,Qc , π, ρ, α)

Govaert and Nadif (2003)
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Maximum likelihood inference

For fixed Q,

Objective Clustering of nodes Z and estimates of θ = {π, α}
Method Maximum likelihood of the observed data
Problem Integrating complete likelihood on Z not tractable

Q∑
q1,...,qn=1

Lα(X |Z1 = q1, . . .Zn = qn)Pπ(Z1 = q1, . . .Zn = qn)

sum of Qn terms

Solution EM algorithm
Problem Pθ(Z|X ) also not tractable
Solution Variational approach of the EM algorithm

Daudin et al. (2008)
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Variational EM

Maximize a lower bound of the observed data log-likelihood

ℓθ(X ) ≥ ℓθ (X )− KL (R(Z)∥Pθ(Z|X ))

= ER [ℓθ (X ,Z)] +H (R(Z))
= Jθ(R(Z))

R(Z) is a mean-field approximation of Z|X
H is the entropy

VEM algorithm
2–step iterative algorithm

VE Maximize Jθ(R(Z)) w.r.t. R(Z)
M Maximize Jθ(R(Z)) w.r.t. θ
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Choosing Q, model selection for SBM

Integrated Classified Likelihood (ICL)

• Penalized criterion for choosing the number of blocks
• Favors well separated blocks

Asymptotic approximation of log
∫
θ
Lθ(X ,Z)p(θ)dθ

ICL(Q, Ẑ) = max
θ

ℓθ(X , Ẑ)− 1
2

Q(Q + 1)
2 log

n(n − 1)
2︸ ︷︷ ︸

α

− Q − 1
2 log n︸ ︷︷ ︸

π

• Exact version available for some models4

4Côme and Latouche (2015)
Biernacki et al. (2000)
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Vizualisation of SBM (Core-periphery structure)

Simulated X ∼ SBM50(3, π, α) where π = [.2, .3, .5] α =
[
.8 .5 .2
.5 .3 .1
.2 .1 .05

]
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A Stochastic Block Model for
multilevel networks



Motivation Dataset

Economic and social networks in a television trade fair 6.

• Economic network: 109
companies signing deals
(undirected interactions)

• Represented on the trade fair
by representatives

• Social network: 128
representatives sharing advice
(directed interactions)

6Brailly (2016)
Lazega et al. (2007) 11



Objective of this work

Data
X I Interactions between individuals

XO Interactions between organizations
A Affiliations of the individuals to the

organizations
Aij = 1 if i is affiliated to j
Only one affiliation per individual

Objectives

• Evaluate the influence of the inter-organizational level on the
inter-individual level

Method

• Joint probabilistic model on X = {X I ,XO} given A

12



A new SBM model dedicated to multilevel networks

1 2 3 4 5

1 2 3 4

5

6

7

Inter-organizational Level

• nO organizations into QO blocks

• Latent variables are independent

• Z O
j = ℓ ⇔ j ∈ ℓ, ℓ ∈ {1, . . . ,QO}

P(Z O
j = ℓ) = πO

ℓ

• Connections are independent
given the latent variables

P(X O
jj′ = 1|Z O

j = ℓ,Z O
j′ = ℓ′) = αO

ℓℓ′
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A new SBM model dedicated to multilevel networks
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Independence between levels

1 2

αI
••

3 4

αI
••

5

6

7

αI
••

αI
••

1 2 3

αO
∗∗

4 5

αO
∗∗αO

∗∗ • Each column of γ is a probability
vector

γkl = P(Z I
i = k|Ai = j,Z O

j = ℓ)

• If γkl = γkl′ ∀k, ℓ, ℓ′

L(X I ,X O |A) = L(X I)L(X O)

• Each level of the multilevel
network is a SBM with πI = γ·1

• Organizational structure has no
influence on the connections of
individuals
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Strong dependence between levels

1 2

αI
••

3 4

αI
••
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••
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••
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αO
∗∗

4 5

αO
∗∗αO

∗∗ • Each column of γ is a probability
vector

γkℓ = P(Z I
i = k|Ai = j,Z O

j = ℓ)

• If ∀ℓ,∃k, γkℓ ≈ 1

• Blocks of individuals are
determined by blocks of
organizations

• ! Does not mean that the
connection patterns are the same
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Results

Mathematical results

Identifiability Under weak hypotheses
• On parameters
• On the number of nodes to number of blocks ratio

Algorithmic results

Inference Variational EM
Model Selection Selecting the number of clusters (QI ,QO)

• ICL criterion
• Step-wise procedure to navigate between models of different

sizes
Independence Between the two levels L(X I ,XO |A) = L(X I)L(XO)

• Condition on γ parameter
• ICL to state on independence

16
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Application to a Television Program Trade Fair Dataset8

128 representatives (buyers and sellers) with directed interactions
(advice) and 109 companies with undirected interactions (deal).

8Brailly (2016)
17



Dataset analysis

• Levels are interdependent, (QI ,QO) = (4, 3)
• Core-periphery structure on XO

• Mainly inter-block connections for X I (except block 3, sub-group of sellers)
• Intra-block connection between individuals do not replicate the intra-block

connections of their organizations (block 2 and 3)

18



Additional results

Numerical studies

• Simulation based on αI and γ

• Strong dependence helps blocks recovery
• ICL good but conservative at detecting interdependence betwen

levels
• Recovery of the blocks when both X I and XO are hard to infer
• Show improvement on prediction of missing links between individuals

on the TV program data set compared to a single level SBM
• X O helps predicting links on X I

Model extension

• To more than 2 levels
• To any number of affiliations (including none)

19



Diffusion

0 S-C. C-L, P. Barbillon, S. Donnet et E. Lazega, (2021) A Stochastic
block model approach for the anlysis of multilevel networks.
Computational Statistics & Data Analysis, 158:107179
MLVSBM available on CRAN and at
https://chabert-liddell.github.io/MLVSBM/

• Simulation and inference of multilevel networks
• Handling of missing data on X I and/or X O

• Prediction on missing dyads, missing links and spurious links
• Extension to multi-affiliation datasets

20

https://chabert-liddell.github.io/MLVSBM/


Robustness of bipartite
ecological interaction networks



Motivation & framework for robustness

Data

• Bipartite Ecological Interaction Networks X ∈ {0, 1}nr×nc

• Mutualistic: Pollination, Seed-Dispersal. . .
• Antagonistic: Host-Parasite. . .

Objective

• Quantifying the impact of species loss on ecosystems

Method

• Counting the number of disconnected species in a network
• Extinction model

• Primary extinctions sequence on row species (plants)
• Secondary extinctions on column species (pollinators) with no

connection

21



What is robustness?



1 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0



s a sequence of plant extinctions

Illustration from https://icons8.com/
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What is robustness?

s the realization of r.v. S ∼ S

S uniform on all plants extinction
sequences

S by decreasing or increasing degree
sequences

robustness function: average over the sequences of plants extinction sequences

m 7→ RS (X ,m) = ES [R (X , S,m)] .
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What is robustness?

s the realization of r.v. S ∼ S

S uniform on all plants extinction
sequences

S by decreasing or increasing degree
sequences

robustness function: average over the sequences of plants extinction sequences

m 7→ RS (X ,m) = ES [R (X , S,m)] .

robustness statistic: the area under the curve

RS(X ) =
1
nr

nr∑
m=0

RS (X ,m)
22



How the topology of X is related to the robustness?

22



Network Model and Robustness

Our proposition:

Model X with a distribution X

Models encompass some of the network topology.

• density, number of species, degree sequence, mesoscale structure. . .

(X,S) joint distribution over the network and the plant extinctions.

Robustness function under a network model:

RX,S (m) = E(X,S)[R (X ,S,m)]

23



Robustness for biSBM

• Species from the same block are ecologically equivalent and
exchangeable

• Exchangeable species are the same for biSBM Robustness
• Computation becomes tractable
• Analytical form to derive properties

For S = U uniform on all row species and
X ∼ biSBMnr ,nc (Qr ,Qc , π, ρ, α):

Rπ,ρ,α,n,U (m) = 1 −
Qc∑

q=1
ρq

(
1 −

Qr∑
k=1

πkαkq

)nr−m
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Robustness for biSBM

For S = U uniform on all row species and
X ∼ biSBMnr ,nc (Qr ,Qc , π, ρ, α):

Rπ,ρ,α,n,U (m) = 1 −
Qc∑

q=1
ρq

(
1 −

Qr∑
k=1

πkαkq

)nr−m

• Variance also available in closed form
• Upper bound of robustness for given number of species and density
• Set of parameters which reach the upper bound and minimize the

variance
• Robustness is an increasing function of the density and the number

of plants

24



Other distributions

Extinction sequences distribution

• Extinction sequences which depend on the latent blocks
• Mimic targeted attack or extinction of ecologically equivalent group

of species

Network distribution

• Model with number of species and density (Erdős-Rényi)
• Model with the degree distribution of species (EDD)
• Model with both degree distribution and mesoscale structure

(DCbiSBM)

25
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Analysis of robustness and mesoscale structure

Fixed number of
species and density

Core-periphery:

j j

j 1

Modular:
j 1

1 j

26



Diffusion and additional work

0 S-C. C-L, P. Barbillon et S. Donnet (2022), Estimating the
robustness of a bipartite ecological networks through a probabilistic
modeling Environmetrics, 33(2), e2709.
robber available on cran
https://chabert-liddell.github.io/robber/

Additional work

• Ability of different models to agree with the classical robustness
• biSBM allows through rescaling of the parameters to:

Predict by computing the robustness of networks with
incomplete sampling effort

Compare robustness in a collection of networks of different
number of species and density

27

https://chabert-liddell.github.io/robber/


Finding common structures in a
collection of networks



Motivation

Data

• Collection X = (. . . ,Xm, . . . )m∈M, M = |M| networks
• Same type:

• Simple and directed: Food webs, Advice networks
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Motivation

Data

• Collection X = (. . . ,Xm, . . . )m∈M, M = |M| networks
• Same type:

• Simple and directed: Food webs, Advice networks

Objectives

• Find common connectivity structures if relevant
• Identify the nodes playing the same ecological (social) roles
• Partition networks by connectivity structures

Method

• Joint modeling of the collection with Stochastic Block Model

28



Three food webs

• Pine-forest stream food webs issued from Maine and North-Carolina
(Thompson and Townsend, 2003)

• Involve respectively 105, 58 and 71 species.

• Look for similarities and differences between network structures.

29



Separated SBMs

• Fitted SBM on each separately
• Reordered the matrices following the blocks
• Label the blocks following the average out-degrees order
• Bottom two groups: basal species (eaten by many species and not

eating anybody)

30



Towards a joint modeling of the networks

• Need to model jointly the networks
• Identify the groups playing the same role through out the networks,

with an unsupervised strategy.
• (Xm) independent.
•

Xm ∼ SBMnm(Qm, π
m, αm)

• Conditions on the parameters (πm)m∈M and (αm)m∈M

31



First naive model

iid-colSBM
Xm ∼ SBMnm(Q, π, α)

with πq > 0 ∀q ∈ {1, . . . ,Q} and
∑Q

q=1 πq = 1.

• Same blocks proportions
• Same connectivity structure

• i.i.d. assumption too strict for most datasets, 2 new relaxations:
• Free proportion of blocks between networks
• Density varies between networks

32
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A first relaxed model : π-colSBM

π-colSBM
Xm ∼ SBMnm(Q, πm, α)

• Same connectivity structure α

• Specific proportions of blocks in each network

On the block proportions
• πm

q ≥ 0
• If πm

q = 0 then block q is not represented in
network m

Let S be the support M × Q matrix such that

Smq =

{
1 if πm

q > 0
0 otherwise .

33



Varying density model: δ-colSBM

δ-colSBM
Xm ∼ SBMnm(Q, π, δmα)

with πq > 0.

• Similar intra- and inter blocks connectivity
patterns

• Network specific density density parameter.
δ1 = 1

• Mimics differences of effort sampling or abundances

34



Varying density and block proportion model: δπ-colSBM

δπ-colSBM
Xm ∼ SBMnm(Q, πm, δmα)

with πm
q ≥ 0

• Same connectivity structure α

• Specific proportions of blocks in each network
• Network specific density density parameter.

δ1 = 1

• Most flexible model

35



Results

Mathematical results

Identifiability Already proven for separated SBMs (Celisse et al., 2012)
• Proven for all 4 colSBMs

• Trivial for iid-colSBM and δ-colSBM
• More demanding for π-colSBM and δπ-colSBM because of

empty blocks (unknown support S)

36



Algorithmic results

Algorithmic results

Variation EM For fixed Q, support S
• Introduce stochasticy in the V-EM algorithm to avoid local

maximum (VE–step are independent for each network)
• (δ–δπ)colSBM: M–Step not explicit for Bernoulli model

Model selection Choosing Q
• BIC like criterion to not penalize the entropy of fuzzy clustering
• Adapted to allow for empty blocks

BIC -L(X,Q) = J (R̂(Z), θ̂)− pencolSBM

• Forward-backward procedure to navigate between model
• Threshold on πm to find support S for a given Q

37
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Model selection Choosing Q
• BIC like criterion to not penalize the entropy of fuzzy clustering
• Adapted to allow for empty blocks

BIC -L(X,Q) = J (R̂(Z), θ̂)− pencolSBM

• Forward-backward procedure to navigate between model
• Threshold on πm to find support S for a given Q
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Partitioning a collection of networks

• BIC-L to assess relevance of common structure (to choose between
colSBM and separated SBMs)

• Different networks of the collection share different structures
• Group M networks sharing the same structure into one of G clusters

Xm ∼ SBMnm(Qg , πm, αg ), g ∈ {1, . . . ,G} (for π–colSBM)

• Find the partition with the highest BIC -L
• Recursive partitioning to cluster the networks of the collection
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Numerical results

Numerical studies

• To test procedures on the ability to recover:
• Connectivity parameter (α)
• Number of blocks Q and support S
• Block memberships (ARI)
• True model (SBM vs πcolSBM vs iidcolSBM)
• Partition of networks

• Ability to find finer block structures than separated SBMs
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Application on the stream food webs
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colSBMs on stream food webs

BIC-L: sepSBM: −2080, iid-colSBM: −1966 (left), π-colSBM: −1982 (right)

• Reject separated SBMs
• iid-colSBM : preferred model. Make 5 blocks
• π-colSBM: block proportion quite similar. Make no use of its

flexibility
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Partition of food webs (δcolSBM)

• M = 67 networks from Mangal database (Vissault et al., 2020)
• 31 to 106 species nodes
• Density range in [.01, .32]
• Modeling the collection with Poisson-δcolSBM

|MA| = 8,QA = 11 |MB | = 28,QB = 6 |MC | = 31,QC = 8
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Diffusion

0 arXiv available soon
colSBM available on github
https://chabert-liddell.github.io/colSBM/

• Simulation and inference of collection of simple networks (directed
and undirected)

• Handle missing data
• Prediction on missing dyads, missing links and spurious links

42

https://chabert-liddell.github.io/colSBM/


Conclusion



Conclusion

3 original contributions

Multilevel Modeling the dependence between levels
Robustness Considering model encompassing topology of the networks
Collection Joint modeling to detect common structures and clusterize

the networks by their structure

Prediction of missing interactions

• For networks with incomplete sampling effort
• Simulate missing information from observed networks

• Useful to assess effectiveness of procedures and pertinence of joint
modeling

• Can be used to quantify the transmission of information between
levels/networks
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Perspectives

• Modeling of networks
• Extend colSBM to bipartite and multipartite networks
• Deal with covariates on nodes, edges and networks

• Summary statistics
• Apply the method used for the robustness to other common

statistics: modularity, nestedness, reciprocity. . .
• Compare network structures under different models through common

statistics

• Improving estimation and/or rescaling of SBM parameters
• For network issued from incomplete sampling effort
• For the comparison of observed networks
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Thank you for your attention!
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