Learning common structures in a collection of networks

Do the networks share common structures?

Saint-Clair Chabert-Liddell Joint work with S. Donnet and P. Barbillon

07 September 2021 EUSN2021

Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris

Modeling a Collection of Networks

Inference, Model Selection and Partition of Networks

Application to a Collection of Advice Networks

Motivation

Data

- Collection $\mathbf{X} = \{\dots, X^m, \dots\}$, $m \in \mathcal{M}$ of $M = |\mathcal{M}|$ networks
- Same type:
 - Simple, Bipartite...
 - Undirected, Directed: Advice networks
- Same value type:
 - Binary (Bernoulli), Count (Poisson)...

Motivation

Data

- Collection $\mathbf{X} = \{\dots, X^m, \dots\}$, $m \in \mathcal{M}$ of $M = |\mathcal{M}|$ networks
- Same type:
 - Simple, Bipartite...
 - Undirected, Directed: Advice networks
- Same value type:
 - Binary (Bernoulli), Count (Poisson)...

Objective Find a common connectivity structure

Question Is the common structure relevant?

Objective Partition networks by connectivity structures

Method Joint modeling with Stochastic Block Model (SBM)

Modeling a Collection of Networks

SBM for a collection of networks (*iidcolSBM*)

- Network X^m , $m \in \mathcal{M}$
- *n_m* individuals into common set of blocks *Q*
- Same blocks proportions: $\mathbb{P}(Z^m_{iq}=1)=\pi_q, \ q\in\mathcal{Q}$
- Same connectivity structure: $\mathbb{P}(X_{ij}^m = 1 | Z_{iq}^m Z_{jr}^m = 1) = \alpha_{qr}$

Core-Periphery

$$\alpha = \begin{bmatrix} .9 & .5 \\ .5 & .1 \end{bmatrix} \qquad \pi = \begin{bmatrix} .25 & .75 \end{bmatrix}$$

iidcolSBM: 4 parameters Vs. 2 *SBM*s: 8 free parameters (undirected networks)

SBM for a collection of networks (*iidcolSBM*)

- Network X^m , $m \in \mathcal{M}$
- n_m individuals into common set of blocks Q
- Same blocks proportions: $\mathbb{P}(Z^m_{iq}=1)=\pi_q,\ q\in\mathcal{Q}$
- Same connectivity structure: $\mathbb{P}(X_{ij}^m = 1 | Z_{iq}^m Z_{jr}^m = 1) = \alpha_{qr}$
- i.i.d. assumption too restrictive, 2 new mechanisms:
 - Free proportion of blocks between networks
 - Density varies between networks

Model with free size of blocks: $\pi colSBM$

SBM for a collection of networks (π colSBM)

- Network $X^m, m \in \mathcal{M}$
- n_m individuals into set of blocks $\mathcal{Q}_m \subset \mathcal{Q}$
- Network specific proportion of blocks: $\mathbb{P}(Z_{iq}^m = 1) = \pi_q^m$, $q \in \mathcal{Q}_m$
- Same connectivity structure: $\mathbb{P}(X_{ij}^m = 1 | Z_{iq}^m Z_{jr}^m = 1) = \alpha_{qr}$

Model with free size of blocks: $\pi colSBM$

SBM for a collection of networks ($\pi colSBM$)

- Network $X^m, m \in \mathcal{M}$
- n_m individuals into set of blocks $\mathcal{Q}_m \subset \mathcal{Q}$
- Network specific proportion of blocks: $\mathbb{P}(Z_{iq}^m = 1) = \pi_q^m$, $q \in \mathcal{Q}_m$
- Same connectivity structure: $\mathbb{P}(X_{ij}^m = 1 | Z_{iq}^m Z_{jr}^m = 1) = \alpha_{qr}$

Nested core-periphery

•
$$\pi^1 = [.25, 0, .75]$$
 $\alpha = \begin{bmatrix} .9 & .5 & .5 \\ .5 & .5 & .3 \\ .5 & .3 & .1 \end{bmatrix}$
• $\pi^2 = [.25, .50, .25]$

πcolSBM: 9 parameters Vs. 2 *SBMs*: 12 free parameters (undirected networks)

Model with density factor $(\delta - \delta \pi) colSBMs$

SBM for a collection of networks ($\delta colSBM$)

- Network X^m , $m \in \mathcal{M}$
- *n_m* individuals into common set of blocks *Q*
 - $\delta colSBM$: $\mathbb{P}(Z_{iq}^m = 1) = \pi_q, q \in \mathcal{Q}$ OR
 - $\delta \pi \operatorname{colSBM}$: $\mathbb{P}(Z^m_{iq} = 1) = \pi^m_q$, $q \in \mathcal{Q}_m \subset \mathcal{Q}$
- Common connectivity structure up to a density parameter: $\mathbb{P}(X_{ij}^m = 1 | Z_{iq}^m Z_{jr}^m = 1) = \delta_m \alpha_{qr}$ with $\delta_1 = 1$ (identifiability)

Model with density factor $(\delta - \delta \pi) colSBMs$

SBM for a collection of networks ($\delta colSBM$)

- Network X^m , $m \in \mathcal{M}$
- *n_m* individuals into common set of blocks *Q*
 - $\delta colSBM$: $\mathbb{P}(Z_{iq}^m = 1) = \pi_q, q \in \mathcal{Q}$ OR
 - $\delta \pi \operatorname{colSBM}$: $\mathbb{P}(Z^m_{iq} = 1) = \pi^m_q$, $q \in \mathcal{Q}_m \subset \mathcal{Q}$
- Common connectivity structure up to a density parameter: $\mathbb{P}(X_{ij}^m = 1 | Z_{iq}^m Z_{jr}^m = 1) = \delta_m \alpha_{qr}$ with $\delta_1 = 1$ (identifiability)

Community structure

δπcolSBM: 7 parameters Vs. 2 SBMs: 10 free parameters (undirected networks)

Identifiability of all *coISBM*s for both parameters and block matching For $|Q_m|$ known with:

- Classical assumptions for SBM on n_m , $|Q_m|$ ratio and $\{\alpha, \pi\}$
- Assumption on block support: $S = \bigotimes_{m \in \mathcal{M}} \mathcal{Q}_m$ for $(\pi \delta \pi) colSBMs$

Inference, Model Selection and Partition of Networks

For fixed support *S*, $\theta = \{\alpha, \pi, \delta\}$:

Objective Joint clustering of $Z = \{Z^1, \dots, Z^{|\mathcal{M}|}\}$ and estimates of θ **Method** Maximum likelihood of the observed data **Idea** Compute complete likelihood and integrate on **Z Problem** Intractable, sum of $\prod_{m \in \mathcal{M}} |Q_m|^{n_m}$ terms **Solution** EM algorithm **Problem** $\mathcal{L}(Z|X)$ also intractable **Solution** Variational approach of the EM algorithm

Variational EM

$$\begin{split} \ell(\mathbf{X}; \boldsymbol{\theta}) &\geq \sum_{m \in \mathcal{M}} \ell(X^m; \boldsymbol{\theta}) - D_{\mathcal{KL}}(\mathcal{R}(Z^m) \| p(Z^m | X^m)) \\ &= \sum_{m \in \mathcal{M}} \left(\mathbb{E}_{\mathcal{R}}[\ell(X^m, Z^m; \boldsymbol{\theta})] + \mathcal{H}(\mathcal{R}(Z^m))) =: \mathcal{J}(\mathcal{R}(\mathbf{Z}), \boldsymbol{\theta}). \\ \mathcal{R}(\mathbf{Z}) \text{ is a mean-field approximation of } \mathbf{Z} | \mathbf{X} \\ \mathcal{H} \text{ is the entropy} \end{split}$$

V-EM algorithm

2 steps iterative algorithm, for each $m \in \mathcal{M}$:

VE Maximize $\mathcal{J}(\mathcal{R}(Z^m), \theta)$ w.r.t. $\mathcal{R}(\mathbf{Z})$

M Maximize $\mathcal{J}(\mathcal{R}(\mathbf{Z}), \theta)$ w.r.t. θ

- Introduce stochasticy in the V-EM algorithm
- (δ-δπ)colSBM: no closed form for M–Step for Bernoulli model (Can use Poisson)

Penalized model-based criterion

• To choose
$$S = \bigotimes_{m \in \mathcal{M}} \mathcal{Q}_m$$

- To determine if common structure is relevant
- Based on Integrated Classification Likelihood (ICL)
- Adapted to allow for empty blocks

$$\mathit{ICL}(\mathcal{M}|S) = \mathcal{J}(\hat{\mathcal{R}}(\mathsf{Z}), \hat{\theta}) - \mathit{pen}_{\mathit{colSBM}}(\mathcal{M}|S)$$

Structure relevant if:

$$\sum_{m \in \mathcal{M}} \max_{Q_m} \mathit{ICL}_{\mathit{SBM}}(m, Q_m) < \max_{S} \mathit{ICL}(\mathcal{M}, S)$$

Biernacki et al. (2000)

Groups of networks may have different connectivity structures. Find the partition with the highest *ICL*

$$\mathcal{G}^* = \arg \max_{\mathcal{G} \in \mathcal{P}(\mathcal{M})} \sum_{g \in \mathcal{G}} \max_{\substack{S \in \mathcal{M}_g \\ m \in \mathcal{M}_g}} \max_{\mathcal{Q}_m} ICL(\mathcal{M}_g|S)$$

Application to a Collection of Advice Networks

Application to advice networks (1)

- 4 advice networks ³
- (126, 104, 71, 153) individuals in (5, 4, 6, 6) SBM Blocks.
- Density: (.061, .049, .18, .053)

³Courtesy of E. Lazega

Application to advice networks (2)

- Modeling 4 networks with $\delta \pi colSBM$
- $ICL_{\delta\pi colSBM} \approx -11147 > -11209 \approx ICL_{SBM}$
- No good common structure for the other models

Application to advice networks (3)

- $\delta \pi colSBM$ difficult to analyze
- Other *coISBM*s: structure of network with judges is different
- Best partition for $\pi colSBM$: Priests-Researchers, Lawyers, Judges ($ICL_{\pi colSBM} \approx -11177$)

Can we better predict advices between priests thanks to other advice networks?

- Encoding proportion K of entries as NA
- Fit *colSBM*s (using Poisson model instead of (δ-δπ)*colSBM*s for inference purpose)
- Using information from Researchers networks with all *colSBM*s
- Using information from different networks with $\delta colSBM$

•
$$\hat{p}_{ij}^{\text{priest}} = \sum_{q,r \in \hat{\mathcal{Q}}_{\text{priest}}} \hat{\mathbb{P}}_{\mathcal{R}}(Z_{iq}^{\text{priest}} = 1) \hat{\mathbb{P}}_{\mathcal{R}}(Z_{jr}^{\text{priest}} = 1) \hat{\delta}^{\text{priest}} \hat{\alpha}_{qr}$$

Predicting missing advices

Can we better predict advices between priests thanks to other advice networks?

- $(\delta \delta \pi) colSBM$ s better at prediction
- Researchers, Lawyers information very insightful when K small
- Judges good for large K

Left: with Researchers for colSBMs, Right: for $\delta colSBM$ with different networks

- Joint modeling of a collection of networks with colSBMs
 - Find a common structure between the different networks
 - Identify blocks between networks
 - Model selection criterion:
 - Determine the relevance of the joint modeling
 - Classify networks from their connectivity patterns
- Extension to other types of networks: bipartite, multipartite...
- Dealing with covariates on nodes, edges and networks

Any questions? saint-clair.chabert-liddell@inrae.fr

References

- Biernacki, C., G. Celeux, and G. Govaert (2000). Assessing a mixture model for clustering with the integrated completed likelihood. *IEEE transactions on pattern analysis and machine intelligence 22*(7), 719–725.
- Daudin, J.-J., F. Picard, and S. Robin (2008). A mixture model for random graphs. *Statistics and computing* 18(2), 173–183.

Examples (1): Nested structures

2 separated SBM: 16 parameters

Examples (1): Nested structures

2 separated SBM: 16 parameters

$\pi colSBM$: 9 paramètres

Common structure relevant

Examples (2): Partially nested structures

Undirected networks:

2 separated SBM: 16 parameters

Examples (2): Partially nested structures

Undirected networks:

2 separated SBM: 16 parameters

 $\pi colSBM$: 15 parameters

• $pen_{SBM}(3) + pen_{SBM}(3) \approx 60 < 67 \approx pen_{\pi colSBM}(5)$ for $n_1 = n_2 = 100$

Common structure not relevant

Partition of networks

All the networks in the collection may not have the same structure.

$$\mathcal{G}^* = \arg \max_{\mathcal{G} \in \mathcal{P}(\mathcal{M})} \sum_{g \in \mathcal{G}} \max_{S \in \bigotimes_{m \in \mathcal{M}_g} \mathcal{Q}_m} ICL(\mathcal{M}_g|S).$$

Need 2^M partitions to compute all partitions. Too costly if M large. Dissimilarity

- colSBMs allow to match Z^ms
- Compute dissimilarity matrix using MLE of SBM on colSBMs block:

$$D(m,m') = \sum_{q,r \in \mathcal{Q}} \max\left(\hat{\pi}_q^m, \hat{\pi}_q^{m'}\right) \max\left(\hat{\pi}_r^m, \hat{\pi}_r^{m'}\right) \left(\frac{\hat{\alpha}_{qr}^m}{\hat{\delta}^m} - \frac{\hat{\alpha}_{qr}^{m'}}{\hat{\delta}^{m'}}\right)^2$$

- Use clustering algorithm on D (hierarchical clustering, k-medoids...)
- Compute ICL_{colSBM} on obtained partition

Extension: Partition of Predation Networks

- $|\mathcal{M}| = 67$ networks from Mangal database
- 31 to 106 species nodes
- Density range in [.01, .32]
- Modeling the collection with $\pi colSBM$

