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Motivation

Data

• Collection X = {. . . ,Xm, . . . }, m ∈ M of M = |M| networks
• Same type:

• Simple, Bipartite. . .
• Undirected, Directed: Advice networks

• Same value type:
• Binary (Bernoulli), Count (Poisson). . .
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Motivation

Data

• Collection X = {. . . ,Xm, . . . }, m ∈ M of M = |M| networks
• Same type:

• Simple, Bipartite. . .
• Undirected, Directed: Advice networks

• Same value type:
• Binary (Bernoulli), Count (Poisson). . .

Objective Find a common connectivity structure
Question Is the common structure relevant?
Objective Partition networks by connectivity structures

Method Joint modeling with Stochastic Block Model (SBM)
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Modeling a Collection of
Networks



Model: iidcolSBM

SBM for a collection of networks (iidcolSBM)

• Network Xm, m ∈ M
• nm individuals into common set of blocks Q
• Same blocks proportions: P(Zm

iq = 1) = πq, q ∈ Q
• Same connectivity structure: P(Xm

ij = 1|Zm
iq Zm

jr = 1) = αqr

Core-Periphery

• α = [ .9 .5
.5 .1 ] π = [.25, .75]

• iidcolSBM: 4 parameters Vs. 2 SBMs: 8 free parameters (undirected
networks)
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Model: iidcolSBM

SBM for a collection of networks (iidcolSBM)

• Network Xm, m ∈ M
• nm individuals into common set of blocks Q
• Same blocks proportions: P(Zm

iq = 1) = πq, q ∈ Q
• Same connectivity structure: P(Xm

ij = 1|Zm
iq Zm

jr = 1) = αqr

i.i.d. assumption too restrictive, 2 new mechanisms:

• Free proportion of blocks between networks
• Density varies between networks
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Model with free size of blocks: πcolSBM

SBM for a collection of networks (πcolSBM)

• Network Xm,m ∈ M
• nm individuals into set of blocks Qm ⊂ Q
• Network specific proportion of blocks: P(Zm

iq = 1) = πm
q , q ∈ Qm

• Same connectivity structure: P(Xm
ij = 1|Zm

iq Zm
jr = 1) = αqr

Nested core-periphery

• π1 = [.25, 0, .75] α =
[
.9 .5 .5
.5 .5 .3
.5 .3 .1

]

• π2 = [.25, .50, .25]

• πcolSBM: 9 parameters Vs. 2 SBMs: 12 free parameters (undirected
networks)
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Model with free size of blocks: πcolSBM

SBM for a collection of networks (πcolSBM)

• Network Xm,m ∈ M
• nm individuals into set of blocks Qm ⊂ Q
• Network specific proportion of blocks: P(Zm

iq = 1) = πm
q , q ∈ Qm

• Same connectivity structure: P(Xm
ij = 1|Zm

iq Zm
jr = 1) = αqr
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[
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]
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networks)
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Model with density factor (δ–δπ)colSBMs

SBM for a collection of networks (δcolSBM)

• Network Xm, m ∈ M
• nm individuals into common set of blocks Q

• δcolSBM: P(Z m
iq = 1) = πq, q ∈ Q OR

• δπcolSBM: P(Z m
iq = 1) = πm

q , q ∈ Qm ⊂ Q

• Common connectivity structure up to a density parameter:
P(Xm

ij = 1|Zm
iq Zm

jr = 1) = δmαqr with δ1 = 1 (identifiability)

Community structure

•

• π1=(.25,.75)
π2=(.50,.50) α = ( .7 .2

.2 .5 ) δ = (1, 0.5)

• δπcolSBM: 7 parameters Vs. 2 SBMs: 10 free parameters (undirected
networks)
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Model with density factor (δ–δπ)colSBMs

SBM for a collection of networks (δcolSBM)

• Network Xm, m ∈ M
• nm individuals into common set of blocks Q

• δcolSBM: P(Z m
iq = 1) = πq, q ∈ Q OR

• δπcolSBM: P(Z m
iq = 1) = πm

q , q ∈ Qm ⊂ Q

• Common connectivity structure up to a density parameter:
P(Xm

ij = 1|Zm
iq Zm

jr = 1) = δmαqr with δ1 = 1 (identifiability)

Community structure

•

• π1=(.25,.75)
π2=(.50,.50) α = ( .7 .2

.2 .5 ) δ = (1, 0.5)

• δπcolSBM: 7 parameters Vs. 2 SBMs: 10 free parameters (undirected
networks)
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Identifiability

Identifiability of all colSBMs for both parameters and block matching

For |Qm| known with:

• Classical assumptions for SBM on nm, |Qm| ratio and {α, π}
• Assumption on block support: S =

⊗
m∈M

Qm for (π–δπ)colSBMs
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Inference, Model Selection and
Partition of Networks



Maximum Likelihood Inference

For fixed support S, θ = {α, π, δ}:

Objective Joint clustering of Z = {Z 1, . . . ,Z |M|} and estimates of θ
Method Maximum likelihood of the observed data

Idea Compute complete likelihood and integrate on Z
Problem Intractable, sum of

∏
m∈M |Qm|nm terms

Solution EM algorithm
Problem L(Z|X) also intractable
Solution Variational approach of the EM algorithm

Daudin et al. (2008)
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Variational EM

ℓ(X;θ) ≥
∑

m∈M
ℓ(Xm;θ)− DKL(R(Zm)∥p(Zm|Xm))

=
∑

m∈M
(ER[ℓ(Xm,Zm;θ)] +H(R(Zm))) =: J (R(Z),θ).

R(Z) is a mean-field approximation of Z|X
H is the entropy

V-EM algorithm
2 steps iterative algorithm, for each m ∈ M:

VE Maximize J (R(Zm),θ) w.r.t. R(Z)
M Maximize J (R(Z),θ) w.r.t. θ

• Introduce stochasticy in the V-EM algorithm
• (δ–δπ)colSBM: no closed form for M–Step for Bernoulli model (Can

use Poisson) 9



Model selection

Penalized model-based criterion

• To choose S =
⊗

m∈M
Qm

• To determine if common structure is relevant
• Based on Integrated Classification Likelihood (ICL)
• Adapted to allow for empty blocks

ICL(M|S) = J (R̂(Z), θ̂)− pencolSBM(M|S)

Structure relevant if:∑
m∈M

max
Qm

ICLSBM(m,Qm) < max
S

ICL(M,S)

Biernacki et al. (2000)
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Partition of networks

Groups of networks may have different connectivity structures.

Find the partition with the highest ICL

G∗ = arg max
G∈P(M)

∑
g∈G

max
S∈

⊗
m∈Mg

Qm
ICL(Mg |S)
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Application to a Collection of
Advice Networks



Application to advice networks (1)

• 4 advice networks 3

• (126, 104, 71, 153) individuals in (5, 4, 6, 6) SBM Blocks.
• Density: (.061, .049, .18, .053)

3Courtesy of E. Lazega
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Application to advice networks (2)

• Modeling 4 networks with δπcolSBM
• ICLδπcolSBM ≈ −11147 > −11209 ≈ ICLSBM

• No good common structure for the other models

δ̂ = (1, 0.7, 0.45, .79) 13



Application to advice networks (3)

• δπcolSBM difficult to analyze
• Other colSBMs: structure of network with judges is different
• Best partition for πcolSBM: Priests-Researchers, Lawyers, Judges

(ICLπcolSBM ≈ −11177)
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Predicting missing advices

Can we better predict advices between priests thanks to other advice networks?

• Encoding proportion K of entries as NA

• Fit colSBMs (using Poisson model instead of (δ–δπ)colSBMs for
inference purpose)

• Using information from Researchers networks with all colSBMs

• Using information from different networks with δcolSBM

• p̂priest
ij =

∑
q,r∈Q̂priest

P̂R(Z priest
iq = 1)P̂R(Z priest

jr = 1)δ̂priest α̂qr
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Predicting missing advices

Can we better predict advices between priests thanks to other advice networks?

• (δ–δπ)colSBMs better at prediction
• Researchers, Lawyers information very insightful when K small
• Judges good for large K

Left: with Researchers for colSBMs, Right: for δcolSBM with different networks
15



Take Home Message

• Joint modeling of a collection of networks with colSBMs
• Find a common structure between the different networks
• Identify blocks between networks
• Model selection criterion:

• Determine the relevance of the joint modeling
• Classify networks from their connectivity patterns

• Extension to other types of networks: bipartite, multipartite. . .
• Dealing with covariates on nodes, edges and networks

Any questions? saint-clair.chabert-liddell@inrae.fr
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Examples (1): Nested structures

2 separated SBM: 16 parameters

• π(1) = [.25, .75] α = [ .9 .5
.5 .1 ]

• π(2) = [.25, .50, .25] α =
[
.9 .5 .5
.5 .5 .3
.5 .3 .1

]

πcolSBM: 9 paramètres

• π(1) = [.25, 0, .75]
π(2) = [.25, .50, .25]

α =
[
.9 .5 .5
.5 .5 .3
.5 .3 .1

]
• penSBM(2) + penSBM(3) ≈ 45 > 39 ≈ penπcolSBM(3) for n1 = n2 = 100

Common structure relevant
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Examples (2): Partially nested structures

Undirected networks:

2 separated SBM: 16 parameters

• π(1) = [.25, .50, .25] α =
[
.9 .5 .5
.5 .5 .1
.5 .1 .5

]

• π(2) = [.25, .50, .25] α =
[
.9 .5 .5
.5 .1 .5
.5 .5 .1

]

πcolSBM: 15 parameters

• π(1) = [.25, 50, .25, 0, 0]
π(2) = [.25, 0, 0, .50, .25]

α =

[ .9 .5 .5 .5 .5
.5 .5 .1 · ·
.5 .1 .5 · ·
.5 · · .1 .5
.5 · · .5 .1

]

• penSBM(3) + penSBM(3) ≈ 60 < 67 ≈ penπcolSBM(5) for n1 = n2 = 100

Common structure not relevant
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Partition of networks

All the networks in the collection may not have the same structure.

G∗ = arg max
G∈P(M)

∑
g∈G

max
S∈

⊗
m∈Mg

Qm
ICL(Mg |S).

Need 2M partitions to compute all partitions. Too costly if M large.

Dissimilarity

• colSBMs allow to match Z ms

• Compute dissimilarity matrix using MLE of SBM on colSBMs block:

D(m,m′) =
∑

q,r∈Q

max
(
π̂m

q , π̂
m′
q

)
max

(
π̂m

r , π̂
m′
r

)( α̂m
qr

δ̂m
−

α̂m′
qr

δ̂m′

)2

• Use clustering algorithm on D (hierarchical clustering, k-medoids. . . )

• Compute ICLcolSBM on obtained partition



Extension: Partition of Predation Networks

• |M| = 67 networks from Mangal database
• 31 to 106 species nodes
• Density range in [.01, .32]
• Modeling the collection with πcolSBM
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